A Simplified Stabilizer ZX-calculus

نویسندگان

  • Miriam Backens
  • Simon Perdrix
  • Quanlong Wang
چکیده

The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: a stabilizer ZX-diagram can be transformed into another one if and only if these two diagrams represent the same quantum evolution or quantum state. We show that the stabilizer ZX-calculus can be simplified, removing unnecessary equations while keeping only the essential axioms which potentially capture fundamental structures of quantum mechanics. We thus give a significantly smaller set of axioms and prove that meta-rules like ‘colour symmetry’ and ‘upside-down symmetry’, which were considered as axioms in previous versions of the language, can in fact be derived. In particular, we show that the additional symbol and one of the rules which had been recently introduced to keep track of scalars (diagrams with no inputs or outputs) are not necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Minimal Stabilizer ZX-calculus

The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: one can transform a stabilizer ZX-diagram into another one if and only if these two diagrams represent the same quantum evolution or quantum state. We show that the stabilizer ZX-calculus can be simplified, removing unnecessary equations while keeping only the e...

متن کامل

The ZX-calculus is complete for stabilizer quantum mechanics

The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics (QM), meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matr...

متن کامل

The ZX calculus is incomplete for quantum mechanics

Backens recently proved that the ZX-calculus is complete for an important subset of quantum mechanics, namely stabilizer quantum mechanics, i.e. that for stabilizer quantum mechanics, any equation that can be shown to hold in the Dirac formalism can also be shown to hold within the ZX-calculus[2]. For her proof, she relied on operations on a special class of quantum states, namely graph states....

متن کامل

Making the stabilizer ZX-calculus complete for scalars

The ZX-calculus is a graphical language for quantum processes with built-in rewrite rules. The rewrite rules allow equalities to be derived entirely graphically, leading to the question of completeness: can any equality that is derivable using matrices also be derived graphically? The ZX-calculus is known to be complete for scalar-free pure qubit stabilizer quantum mechanics, meaning any equali...

متن کامل

Pivoting makes the ZX-calculus complete for real stabilizers

We show that pivoting property of graph states cannot be derived from the axioms of the ZX-calculus, and that pivoting does not imply local complementation of graph states. Therefore the ZX-calculus augmented with pivoting is strictly weaker than the calculus augmented with the Euler decomposition of the Hadamard gate. We derive an angle-free version of the ZX-calculus and show that it is compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016